

    
      
          
            
  
Data Tracker



	Data Structure
	Terminology

	Order

	Dataset

	Project

	User

	Log

	DOI

	Other topics





	API
	Order

	Dataset

	Project

	User





	System for development

	Code reference
	app.py

	config.py

	dataset.py

	developer.py

	order.py

	project.py

	structure.py

	user.py

	utils.py












Indices and tables


	Index


	Module Index


	Search Page








          

      

      

    

  

    
      
          
            
  
Data Structure

The Data Tracker is based on a few main components:


	Order


	Dataset


	Project


	User


	Log


	DOI





Terminology


	Fields:


	Fields in the documents for the datatype/collection






	Computed fields:


	Values that are either calculated or retrieved from documents in other collection(s)


	Included when the entity is requested via API











Order


	Added automatically when e.g. order in order portal changes to accepted


	Import data from order portal






	Can have any number of associated datasets





Fields


	_id


	Uuid for the order






	Title


	Name






	Description


	Description in markdown






	Creator (facility name)


	Creator can be set to e.g. external if a non-facility wants to add a dataset






	Receiver


	Email or uuid of the user who made the order


	Input to add will be an email address, which is mapped to the user collection


	Uuid saved: user exists


	Email saved: user does not exist






	Datasets


	All datasets generated for the order






	Extra fields


	Custom fields in the style {'key': 'key_name', 'value': 'data value'}













Dataset


	Data generated by e.g. facility


	One per “data delivery” from facility


	Can have identifier(s) (e.g. DOIs)


	Data links can be added by receiver


	Receiver and creator can edit the entry (inherited from order)





Fields


	_id


	Uuid of the dataset






	Title


	Name






	Description


	Description in markdown






	Links


	List of links to where the dataset can be found.


	List entry:




{
  'title': 'name',
  'url': 'https://place',
  'hashes': {
    'type': 'sha256',
    'files': [
      {
        'name': 'filename',
        'hash': 'FEDCBA9...'
      }
    ]
  }
}






	title and url are mandatory for each link, hashes is optional










	Extra


	Custom fields in the style {'key': 'key_name', 'value': 'data value'}











Computed fields


	Related


	All other datasets from the same order






	Projects


	Identifiers


	Local identifier


	DOIs






	Creator


	Inherited from order


	Name of e.g. facility that generated the dataset













Project


	Created by users


	Can have multiple owners


	Can have identifiers


	Intended as a way for a user to have a page to show off their data and be able to get an identifier (DOI)





Fields


	_id


	Uuid for the projects






	Title


	Name






	Description


	Description in markdown






	Contact


	Contact information (email) for the project






	Datasets


	Datasets connected to the dataset


	Can be added by receiver/creator of dataset


	Can be removed by any user listed in owners






	Publications


	List of publications related to the project


	Entry:




{
  'title': 'name',
  'doi': 'doi-id'
}






	title+doi mandatory, but maybe include ability to add e.g. journal, year etc










	DMP


	Data management plan


	URL






	Owners


	List of uuids/emails


	Just like with order; email can be used if user not in db yet


	Allow facilities to prepare project pages










	Extra fields


	Custom fields in the style {'key': 'key_name', 'value': 'data value'}











Computed fields:


	Identifiers


	Local identifier


	DOIs













User


	Everyone using the system is a user


	Login via Elixir AAI


	On first login, the user will be added to db


	Use auth_id to recognize user


	Read e.g. email from the login info






	API can also be accessed using an API key


	may be created by any user






	“admin” can create user for facility


	A user can “claim entries”


	Will check all order receivers/project owners whether the users email is listed


	Email will be replaced with user uuid










	Facilities cannot log in via Elixir, but must do so via api_key





Fields


	_id


	Uuid for the order






	Email


	Email address of the user






	Auth_id


	Identifer received from Elixir


	Is set to --facility-- for facilities to avoid Elixir login






	Api_key


	Key that can be used as an alternative to login for authentication






	Name


	Name of the user (can be e.g. name of facility for facility accounts)






	Affiliation


	University/company etc






	Country


	The country of the user






	Permissions


	A list of the extra permissions the user has (see Permissions)













Log


	Whenever an entry (order, dataset, project, or user) is changed, a log should be written


	All logs are in the same collection


	A function is required to show changes between different versions of an entry





Fields


	_id


	uuid for the log






	`Action’


	Type of action (add, edit, or delete)






	Data_type


	The collection that was modified (order, dataset, project, or user)






	Data


	Add/edit: complete copy of document


	Delete: empty






	Timestamp


	The time the action was performed






	User


	Uuid of the user performing the action













DOI


	Two collections


	doi_req - Requests for a DOI


	doi - Accepted DOIs






	Users can request a DOI for datasets and projects


	Upon request, data is copied to doi_req


	A reviewer will need to check the data for the request


	Required fields


	File hashes






	If accepted, the data will be copied to doi


	Each DOI document is a complete copy of the entire data structure that was accepted for the DOI





Fields (request)


	_id


	Uuid for the request






	Data


	A complete copy of all relevant data


	A project with associated datasets will include copies of the datasets in datasets instead of only uuids






	Status


	Requested, Accepted, Rejected






	User


	User that made the request






	Updates


	Mini log system




{
  'timestamp': <current time>,
  'new_status': 'new_status'
}







	Type


	dataset or project






	Comments


	Comments from the reviewer











Computed Fields (request)


	Other_requests


	Other requests that have been made for the same entry


	To allow the reviewer to see e.g. earlier comments











Fields (doi entry)


	_id


	The DOI identifier






	timestamp


	When the entry was created






	Data


	The complete entry that has been accepted













Other topics


Identifiers


	Only uuid initially


	Can request a “fancier” local identifer for dataset/project


	Style similar to:


	scilifelab.facility.orderxyz.dataset1


	scilifelab.projects.title1










	All datasets and projects can request DOI


	The required fields will be checked if empty. If not the request will be sent for evaluation by e.g. admin











Permissions


	“Permission classes” used to evaluate what a user may do


	CREATE_ORDERS


	MANAGE_USERS


	EDIT_ANY_DATA


	READ_OWNERS


	DOI_REVIEWER






	“Default groups”


	Template for user, giving a specific set of permissions


	Admin - “all”


	Facility - “create orders”+”read ownerships”
















          

      

      

    

  

    
      
          
            
  
API

Base URL for the API is <url>/api. All API description have the base implied before the first /.


Order


	
/order/<identifier>

	GET Get information about the order with uuid identifier.

DELETE Delete the order with uuid identifier.

PUT Update the order with uuid identifier.






	
/order/add

	GET Get an object describing the input fields for POST.

POST Add a new order.






	
/order/<identifier>/addDataset

	GET Get an object describing the input fields for POST.

POST Add a new dataset belonging to order with uuid identifier.






	
/order/user

	GET Get a list of orders created or received by current user or username (if provided as parameter).








Dataset


	
/dataset/<identifier>

	GET Get information about the dataset with uuid identifier.

DELETE Delete the dataset with uuid identifier.

PUT Update the dataset with uuid identifier.






	
/dataset/all

	GET Get a list of all datasets. Can be limited by parameters.






	
/dataset/user

	GET Get a list of datasets created or received by current user or username (if provided as parameter).








Project


	
/project/<identifier>

	GET Get information about the project with uuid identifier.

DELETE Delete the project with uuid identifier.

PUT Update the project with uuid identifier.






	
/project/all

	GET Get a list of all projects. Can be limited by parameters.






	
/project/user

	GET Get a list of projects created or received by current user or username (if provided as parameter).








User


	
/user/me

	GET Get information about the current user






	
/user/edit

	GET Update information of current user






	
/user/edit/<uuid>

	GET Update information of user with uuid uuid






	
/user/logout

	GET Log out current user






	
/user/login

	GET Log in user via elixir






	
/user/all

	GET Get a list of all users






	
/user/countries

	GET Get a list of countries











          

      

      

    

  

    
      
          
            
  
System for development

Build and activate the containers:

docker-compose up





The system can be accessed in a web browser at localhost:5000.

Randomized test data can be generated by test/gen_test_db.py. Run it using e.g.:

PYTHON_PATH=backend python3 test/gen_test_db.py









          

      

      

    

  

    
      
          
            
  
Code reference



	app.py

	config.py

	dataset.py

	developer.py

	order.py

	project.py

	structure.py

	user.py

	utils.py









          

      

      

    

  

    
      
          
            
  
app.py





          

      

      

    

  

    
      
          
            
  
config.py

Settings manager for the data tracker.

Read settings from ./config.yaml, ../config.yaml or from the provided path.


	
config.init(app)

	Read settings and add them to the app config.


	Parameters

	app – the Flask app










	
config.read_config(path: str = '')

	Look for settings.yaml and parse the settings from there.

The file is expected to be found in the current, parent or provided folder.


	Parameters

	path (str) – The yaml file to use



	Returns

	The loaded settings



	Return type

	dict



	Raises

	FileNotFoundError – No settings file found













          

      

      

    

  

    
      
          
            
  
dataset.py





          

      

      

    

  

    
      
          
            
  
developer.py





          

      

      

    

  

    
      
          
            
  
order.py





          

      

      

    

  

    
      
          
            
  
project.py





          

      

      

    

  

    
      
          
            
  
structure.py

Required fields for the different data types.


	
structure.dataset()

	Provide a basic data structure for a dataset.


	Returns

	the data structure for datasets



	Return type

	dict










	
structure.order()

	Provide a basic data structure for an order.


	Returns

	the data structure for orders



	Return type

	dict










	
structure.order_validator(data: dict)

	Validate the content of the fields of an incoming order.


	Parameters

	data (dict) – order to check



	Raises

	ValueError – bad incoming data










	
structure.project()

	Provide a basic data structure for a project.


	Returns

	the data structure for projects



	Return type

	dict










	
structure.user()

	Provide a basic data structure for a user.


	Returns

	the data structure for users



	Return type

	dict













          

      

      

    

  

    
      
          
            
  
user.py





          

      

      

    

  

    
      
          
            
  
utils.py

General helper functions.


	
utils.check_csrf_token()

	Compare the csrf token from the request (header) with the one in the cookie.session.






	
utils.check_mongo_update(document: dict)

	Make sure that some fields in a document are not changed during an update.

Also make sure indata is not empty.


	Parameters

	document (dict) – received input to update a document










	
utils.convert_keys_to_camel(chunk)

	Convert keys given in snake_case to camelCase.

The capitalization of the first letter is preserved.


	Parameters

	chunk – Object to convert



	Returns

	chunk converted to camelCase dict, otherwise chunk



	Return type

	
	














	
utils.country_list()

	Provide a list of countries.


	Returns

	A selection of countries.



	Return type

	list










	
utils.gen_csrf_token() → str

	Genereate a csrf token.


	Returns

	the csrf token



	Return type

	str










	
utils.get_dataset(identifier: str)

	Query for a dataset from the database.


	Parameters

	identifier (str) – the uuid of the dataset



	Returns

	the dataset



	Return type

	dict










	
utils.get_db(dbserver: pymongo.mongo_client.MongoClient) → pymongo.database.Database

	Get the connection to the MongoDB database.


	Parameters

	dbserver – connection to the db



	Returns

	the database connection



	Return type

	pymongo.database.Database










	
utils.get_dbserver() → pymongo.mongo_client.MongoClient

	Get the connection to the MongoDB database server.


	Returns

	the client connection



	Return type

	pymongo.mongo_client.MongoClient










	
utils.get_project(identifier: str)

	Query for a project from the database.


	Parameters

	identifier (str) – the uuid of the project



	Returns

	the project



	Return type

	dict










	
utils.is_email(indata: str)

	Check whether a string seems to be an email address or not.


	Parameters

	indata (str) – data to check



	Returns

	is the indata an email address or not



	Return type

	bool










	
utils.is_owner(dataset: str = None, project: str = None)

	Check if the current user owns the given dataset or project.

If both a dataset and a project is provided, an exception will be raised.


	Parameters

	
	dataset (str) – the dataset to check


	project (str) – the project to check






	Returns

	whether the current owns the dataset/project



	Return type

	bool



	Raises

	ValueError – one of dataset or project must be set, and not both










	
utils.make_log(data_type: str, action: str, data: dict = None)

	Log a change in the system.

Saves a complete copy of the new object.

It is assumed that all values are curated,
e.g. that data only contains permitted fields.


	Parameters

	
	action (str) – type of action (insert, update etc)


	data_type (str) – the collection name


	data (dict) – the new data for the entry













	
utils.make_timestamp()

	Generate a timestamp of the current time.


	Returns

	the current time



	Return type

	datetime.datetime










	
utils.new_uuid() → uuid.UUID

	Generate a uuid for a field in a MongoDB document.


	Returns

	the new uuid in binary format



	Return type

	uuid.UUID










	
utils.response_json(json_structure: dict)

	Convert keys to camelCase and run flask.jsonify().


	Parameters

	json_structure (dict) – structure to prepare



	Returns

	prepared response containing json structure with camelBack keys



	Return type

	flask.Response










	
utils.str_to_uuid(uuid_str: str) → uuid.UUID

	Convert str uuid to uuid.UUID.


	Parameters

	uuid_str (str) – the uuid to be converted



	Returns

	the uuid



	Return type

	uuid.UUID













          

      

      

    

  

    
      
          
            

   Python Module Index


   
   c | 
   s | 
   u
   


   
     		 	

     		
       c	

     
       	
       	
       config	
       

     		 	

     		
       s	

     
       	
       	
       structure	
       

     		 	

     		
       u	

     
       	
       	
       utils	
       

   



          

      

      

    

  

    
      
          
            

Index



 C
 | D
 | G
 | I
 | M
 | N
 | O
 | P
 | R
 | S
 | U
 


C


  	
      	check_csrf_token() (in module utils)


      	check_mongo_update() (in module utils)


  

  	
      	config (module)


      	convert_keys_to_camel() (in module utils)


      	country_list() (in module utils)


  





D


  	
      	dataset() (in module structure)


  





G


  	
      	gen_csrf_token() (in module utils)


      	get_dataset() (in module utils)


  

  	
      	get_db() (in module utils)


      	get_dbserver() (in module utils)


      	get_project() (in module utils)


  





I


  	
      	init() (in module config)


  

  	
      	is_email() (in module utils)


      	is_owner() (in module utils)


  





M


  	
      	make_log() (in module utils)


  

  	
      	make_timestamp() (in module utils)


  





N


  	
      	new_uuid() (in module utils)


  





O


  	
      	order() (in module structure)


  

  	
      	order_validator() (in module structure)


  





P


  	
      	project() (in module structure)


  





R


  	
      	read_config() (in module config)


  

  	
      	response_json() (in module utils)


  





S


  	
      	str_to_uuid() (in module utils)


  

  	
      	structure (module)


  





U


  	
      	user() (in module structure)


  

  	
      	utils (module)


  







          

      

      

    

  _static/data-centre-logo.png
Scil ifeLab

Data Centre





_static/file.png





_static/minus.png





nav.xhtml

    
      Table of Contents


      
        		
          Data Tracker
        


        		
          Data Structure
          
            		
              Terminology
            


            		
              Order
              
                		
                  Fields
                


              


            


            		
              Dataset
              
                		
                  Fields
                


                		
                  Computed fields
                


              


            


            		
              Project
              
                		
                  Fields
                


                		
                  Computed fields:
                


              


            


            		
              User
              
                		
                  Fields
                


              


            


            		
              Log
              
                		
                  Fields
                


              


            


            		
              DOI
              
                		
                  Fields (request)
                


                		
                  Computed Fields (request)
                


                		
                  Fields (doi entry)
                


              


            


            		
              Other topics
              
                		
                  Identifiers
                


                		
                  Permissions
                


              


            


          


        


        		
          API
          
            		
              Order
            


            		
              Dataset
            


            		
              Project
            


            		
              User
            


          


        


        		
          System for development
        


        		
          Code reference
          
            		
              app.py
            


            		
              config.py
            


            		
              dataset.py
            


            		
              developer.py
            


            		
              order.py
            


            		
              project.py
            


            		
              structure.py
            


            		
              user.py
            


            		
              utils.py
            


          


        


      


    
  

_static/plus.png





